Effect of cardiac myosin binding protein-C on mechanoenergetics in mouse myocardium.
نویسندگان
چکیده
We examined the effect of cardiac myosin binding protein-C (cMyBP-C) on contractile efficiency in isovolumically contracting left ventricle (LV) and on internal viscosity and oscillatory work production in skinned myocardial strips. A 6-week diet of 0.15% 6-n-propyl-2-thiouracil (PTU) was fed to wild-type (+/+(PTU)) and homozygous-truncated cMyBP-C (t/t(PTU)) mice starting at age approximately 8 weeks and leading to a myosin heavy chain (MHC) isoform profile of 10% alpha-MHC and 90% beta-MHC in both groups. Western blot analysis confirmed that cMyBP-C was present in the +/+(PTU) and effectively absent in the t/t(PTU). Total LV mechanical energy per beat was quantified as pressure-volume area (PVA). O2 consumption (Vo2) per beat was plotted against PVA at varying LV volumes. The reciprocal of the slope of the linear Vo2-PVA relation represents the contractile efficiency of converting O2 to mechanical energy. Contractile efficiency was significantly enhanced in t/t(PTU) (26.1+/-2.6%) compared with +/+(PTU) (17.1+/-1.6%). In skinned myocardial strips, maximum isometric tension was similar in t/t(PTU) (18.7+/-2.1 mN x mm(-2)) and +/+(PTU) (21.9+/-4.0 mN x mm(-2)), but maximum oscillatory work induced by sinusoidal length perturbations occurred at higher frequencies in t/t(PTU) (7.31+/-1.17 Hz) compared with +/+(PTU) (4.48+/-0.60 Hz) and was significantly more sensitive to phosphate concentration in the t/t(PTU). Under rigor conditions, the internal viscous load was significantly lower in the t/t(PTU) compared with +/+(PTU), ie, approximately 40% lower at 1 Hz. These results collectively suggest that contractile efficiency is enhanced in the t/t(PTU), probably through a reduced loss of mechanical energy by a viscous load normally provided by cMyBP-C and through a gain of phosphate-dependent oscillatory work normally inhibited by cMyBP-C.
منابع مشابه
Ablation of cardiac myosin-binding protein-C accelerates stretch activation in murine skinned myocardium.
Cardiac myosin binding protein-C (cMyBP-C) is a thick filament accessory protein that binds tightly to myosin, but despite evidence that mutations in the cMyBP-C gene comprise a frequent cause of hypertrophic cardiomyopathy, relatively little is known about the role(s) of cMyBP-C in myocardium. Based on earlier studies demonstrating the potential importance of stretch activation in cardiac cont...
متن کاملDifferential roles of cardiac myosin-binding protein C and cardiac troponin I in the myofibrillar force responses to protein kinase A phosphorylation.
The heart is remarkably adaptable in its ability to vary its function to meet the changing demands of the circulatory system. During times of physiological stress, cardiac output increases in response to increased sympathetic activity, which results in protein kinase A (PKA)-mediated phosphorylations of the myofilament proteins cardiac troponin (cTn)I and cardiac myosin-binding protein (cMyBP)-...
متن کاملCardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium.
Cardiac myosin-binding protein-C (cMyBP-C) is a thick filament-associated protein that seems to contribute to the regulation of cardiac contraction through interactions with either myosin or actin or both. Several studies over the past several years have suggested that the interactions of cardiac myosin-binding protein-C with its binding partners vary with its phosphorylation state, binding pre...
متن کاملNovel splice donor site mutation in the cardiac myosin-binding protein-C gene in familial hypertrophic cardiomyopathy. Characterization Of cardiac transcript and protein.
Familial hypertrophic cardiomyopathy is a disease generally believed to be caused by mutations in sarcomeric proteins. In a family with hypertrophic cardiomyopathy linked to polymorphic markers on chromosome 11, we found a new mutation of a splice donor site of the cardiac myosin-binding protein-C gene. This mutation causes the skipping of the associated exon in mRNA from lymphocytes and myocar...
متن کاملProtein kinase A–induced myofilament desensitization to Ca2+ as a result of phosphorylation of cardiac myosin–binding protein C
In skinned myocardium, cyclic AMP-dependent protein kinase A (PKA)-catalyzed phosphorylation of cardiac myosin-binding protein C (cMyBP-C) and cardiac troponin I (cTnI) is associated with a reduction in the Ca(2+) responsiveness of myofilaments and an acceleration in the kinetics of cross-bridge cycling, although the respective contribution of these two proteins remains controversial. To furthe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 94 12 شماره
صفحات -
تاریخ انتشار 2004